Search results for "Two-dimensional space"
showing 4 items of 4 documents
A simple microsuperspace model in 2 + 1 spacetime dimensions
1992
Abstract We quantize the closed Friedmann model in 2 + 1 spacetime dimensions using euclidean path-integral approach and a simple microsuperspace model. A relationship between integration measure and operator ordering in the Wheeler-DeWitt equation is found within our model. Solutions to the Wheeler-DeWitt equation are exactly reproduced from the path integral using suitable integration contours in the complex plane.
Positioning in a flat two-dimensional space-time
2008
The basic theory on relativistic positioning systems in a two-dimensional space-time and the analysis of the possibility of making relativistic gravimetry with these systems have been presented elsewhere [Phys. Rev. D 73 , 084017 (2006); Phys. Rev. D 74 , 104003 (2006)]. Here we summarize these results and we outline new issues on the relativistic positioning systems in Minkowski plane. We point out that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters and only during a light echo interval.
Positioning with stationary emitters in a two-dimensional space-time
2006
The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D {\bf 73}, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make {\em relativistic gravimetry}. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coord…
Positioning in a flat two-dimensional space-time: the delay master equation
2010
The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [Phys. Rev. D {\bf 73}, 084017 (2006); {\bf 74}, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here we study generic relativistic positioning systems in the Minkowski plane. We analyze the information that can be obtained from the data received by a user of the positioning system. We show that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one …